CLEANing the Reward: Counterfactual Actions Remove Exploratory Action Noise in Multiagent Learning
نویسندگان
چکیده
Coordinating the joint-actions of agents in cooperative multiagent systems is a difficult problem in many real world domains. Learning in such multiagent systems can be slow because an agent may not only need to learn how to behave in a complex environment, but also to account for the actions of other learning agents. The inability of an agent to distinguish between the true environmental dynamics and those caused by the stochastic exploratory actions of other agents creates noise in each agent’s reward signal. This learning noise can have unforeseen and often undesirable effects on the resultant system performance. We define such noise as exploratory action noise, demonstrate the critical impact it can have on the learning process in multiagent settings, and introduce a reward structure to effectively remove such noise from each agent’s reward signal. In particular, we introduce two types of Coordinated Learning without Exploratory Action Noise (CLEAN) rewards that allow an agent to estimate the counterfactual reward it would have received had it taken an alternative action. We empirically show that CLEAN rewards outperform agents using both traditional global rewards and shaped difference rewards in two domains.
منابع مشابه
CLEANing the Reward: Counterfactual Actions to Remove Exploratory Action Noise in Multiagent Learning
Learning in multiagent systems can be slow because agents must learn both how to behave in a complex environment and how to account for the actions of other agents. The inability of an agent to distinguish between the true environmental dynamics and those caused by the stochastic exploratory actions of other agents creates noise in each agent’s reward signal. This learning noise can have unfore...
متن کاملCLEANing the reward: counterfactual actions to remove exploratory action noise in multiagent learning (extended abstract)
Learning in multiagent systems can be slow because agents must learn both how to behave in a complex environment and how to account for the actions of other agents. The inability of an agent to distinguish between the true environmental dynamics and those caused by the stochastic exploratory actions of other agents creates noise in each agent’s reward signal. This learning noise can have unfore...
متن کاملCLEAN rewards for improving multiagent coordination in the presence of exploration
In cooperative multiagent systems, coordinating the jointactions of agents is difficult. One of the fundamental difficulties in such multiagent systems is the slow learning process where an agent may not only need to learn how to behave in a complex environment, but may also need to account for the actions of the other learning agents. Here, the inability of agents to distinguish the true envir...
متن کاملCounterfactual Exploration for Improving Multiagent Learning
In any single agent system, exploration is a critical component of learning. It ensures that all possible actions receive some degree of attention, allowing an agent to converge to good policies. The same concept has been adopted by multiagent learning systems. However, there is a fundamentally different dynamic in multiagent learning: each agent operates in a non-stationary environment, as a d...
متن کاملLearning from Actions not Taken in Multiagent Systems
In large cooperative multiagent systems, coordinating the actions of the agents is critical to the overall system achieving its intended goal. Even when the agents aim to cooperate, ensuring that the agent actions lead to good system level behavior becomes increasingly difficult as systems become larger. One of the fundamental difficulties in such multiagent systems is the slow learning process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014